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Background
Three-dimensional (3D) structures of proteins and protein–protein interactions (PPIs) 
are essential to understand most biochemical functions of cells and living organisms. 
Yet, the amount of experimentally determined 3D structures is limited, especially for 
protein complexes. Structural models derived by computational methods can be used 

Abstract 

Background: Statistical potentials, also named knowledge‑based potentials, are 
scoring functions derived from empirical data that can be used to evaluate the quality 
of protein folds and protein–protein interaction (PPI) structures. In previous works we 
decomposed the statistical potentials in different terms, named Split‑Statistical Poten‑
tials, accounting for the type of amino acid pairs, their hydrophobicity, solvent acces‑
sibility and type of secondary structure. These potentials have been successfully used 
to identify near‑native structures in protein structure prediction, rank protein docking 
poses, and predict PPI binding affinities.

Results: Here, we present the SPServer, a web server that applies the Split‑Statistical 
Potentials to analyze protein folds and protein interfaces. SPServer provides global 
scores as well as residue/residue‑pair profiles presented as score plots and maps. This 
level of detail allows users to: (1) identify potentially problematic regions on protein 
structures; (2) identify disrupting amino acid pairs in protein interfaces; and (3) com‑
pare and analyze the quality of tertiary and quaternary structural models.

Conclusions: While there are many web servers that provide scoring functions to 
assess the quality of either protein folds or PPI structures, SPServer integrates both 
aspects in a unique easy‑to‑use web server. Moreover, the server permits to locally 
assess the quality of the structures and interfaces at a residue level and provides tools 
to compare the local assessment between structures.
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to close the gap between the number of sequences and structures. In the recent CASP13 
competition, we have observed a dramatic progress in the quality of the template-free 
models made by novel computational methods involving deep learning techniques [1]. 
However, these methods need to be complemented by evaluation methods to know the 
margins of accuracy when we study the role of structural models in a biological system 
[2].

Evaluation methods can be classified into two categories: single- and multiple-model 
methods. Single-model methods only require one model as input, whereas multiple-
model methods require several. The latter ones take advantage of the similarity between 
the distinct models to evaluate them, but they are not based on the properties of the 
model itself. In contrast, single-model methods are often based on the geometric and 
energetic analysis of the model coordinates, although some of them may also use addi-
tional information (e.g. for evolutionary related proteins) [3, 4].

For single-model methods, the most common approach is to use knowledge-based 
potentials, i.e. scoring functions derived from the analysis of empirical data [5]. Several 
computational methods have been implemented from knowledge-based potentials [6–
8]. Split-Statistical Potentials (SPs) are knowledge-based potentials that consider the fre-
quency of pairs of residues in contact and include their structural environment, such as 
solvent accessibility and type of secondary structure. Previously, we demonstrated that 
SPs can be used to: (1) identify near-native protein decoys in structure prediction [9]; 
and (2) rank protein–protein docking poses [10, 11]. SPs compared favorably against 115 
scoring functions on a docking decoy benchmark [12] and were successful at predicting 
binding energies of PPIs without requiring the native structures of the complexes [13].

Many scoring methods have been proposed to assess the quality of protein fold mod-
els [6–8, 14–18]. However, very few can be easily accessed as web servers by the non-
specialized user. In most cases, the web servers have a reduced input flexibility (i.e. only 
accept models in PDB format, require chain identifiers and protein sequences, or do not 
accept multiple structures) and a complicated visualization of the results (i.e. do not per-
mit to download results or do not have 3D visualization capabilities).

Here, we present the Split-Statistical Potentials Server (SPServer) featuring our SPs 
for the evaluation of protein structures and PPIs. The web server has been designed 
to facilitate its use and the interpretation of results. When analyzing protein folds, the 
server returns global scores and shows score profiles along the protein sequence to iden-
tify potentially problematic regions in the structure. When analyzing PPIs, the server 
returns global scores and score maps of the interfaces. The SPServer identifies stabiliz-
ing and disrupting residue pairs that can be used as starting point for follow up protein 
engineering.

Implementation
The overall implementation of the web server is summarized in Fig. 1 and explained in 
detail as follows:

Input

As input, users have to provide the structures of one or more proteins or protein com-
plexes. The server input is flexible; users can provide either PDB structures, mmCIF 
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files or compressed directories containing the structures to analyze. Users also have 
to select the parameter used to define residue contacts (i.e.12 Å cut-off between their 
β-carbons—option Cβ—or 5  Å between any atom of each residue—option MIN—). 
Often the structures used as input are produced by modelling or fold prediction 
approaches, because we are interested in checking the quality of models rather than 
the quality of experimental structures. In the case of structures of single proteins 
or folds, the most common methods to produce them are by homology modelling 
(e.g. by MODELLER [19]), remote homology (e.g. by PHYRE [20] or FUGUE [21]), 
by threading and ab  initio fold prediction (e.g. by I-TASSER [22], THREADER [23], 
or in particular for sequences in CASP13 using AlphaFold [24]), or protein structure 
design (e.g. with Rosetta [25]). For protein–protein interactions the structures may 
be produced by template homology (e.g. from Interactome3D [26], PrePPI [27] or 
MODPIN [28]), template docking (e.g. by ICM [29]), docking (e.g. by pyDOCK [30], 
FTDOCK [31], V-D2OCK [32], PatchDock [33] or ZDOCK [34]) or directed docking 
(e.g. RosettaDock [25] and HADDOCK [35]).

Scoring

The first step of the scoring process is to identify the contacts between residues from 
the same protein (to score protein folds) or from different proteins (to score PPIs). 
These contacts consider the amino acids type, the distance between them, and envi-
ronmental features such as the type of secondary structure or the degree of exposure 
of the amino acids. SPs provide a score for each one of these contacts. We obtain the 
score of a structure by performing the sum of scores of all its contacts. We can also 
get the scores of individual amino acids by performing the sum of scores of all the 
contacts of that residue. This can be used to define a score profile along the protein 

Fig. 1 General scheme of the functioning of the SPServer. The web server is divided into three sections: 
input, to upload either single protein structures (for fold analyses) or binary complexes (for protein–protein 
interaction analyses); scoring, to score the quality of the single and complex structures; and output, to display 
the local profiles of single structures and heatmap of residue‑residue scores in the interface of the input 
binary complexes
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sequence. Residue scores can be averaged using a sliding window of size defined by 
the user along the protein sequence in order to smooth the profile.

We defined SPs in previous works [9, 10] using the description of a potential of 
mean force (PMF), say the features describing an amino acid are defined by θ, with: 
θ = (secondary structure, polar character, degree of exposure). Then we define the 
potentials as in Eqs. 1–5:

with  kB the Boltzmann constant, T the standard temperature (300 K), θa, and θb the fea-
tures of amino acids a and b, and  dab the distance between both residues. The terms P(·) 
denote the probabilities of observing interacting pairs (with or without conditions). For 
instance, P(a,b|dab) is the conditional probability that residues a,b interact at distance 
smaller than or equal to  dab, and P(dab) is the probability of finding any pair of residues 
interacting at distance smaller than or equal to  dab.

The scores PAIR, ELOCAL, E3D, E3DC, and ES3DC are obtained by summing the 
PMF with the corresponding subindex of each pair of interacting residues a, b, either 
of the same protein (for fold) or between two interacting proteins (for PPIs), as in Eq. 6:

We proved [9] that the classical statistic potential, PAIR, can be approximated to:

With a residual ε that accounts for the reference state and becomes noise centered 
at 0 upon normalization (i.e. when transformed in Z-scores, see further). Hence, 
given that E3D nullifies when normalizing the scores and ε is irrelevant, we define 
another score, ECOMB, as:

Furthermore, these potentials can be used to generate a profile per amino acid posi-
tion along the sequence by summing the energies of the contacts of each residue.

(1)PMFPAIR(a, b) = −kBTlog

(

P(a, b|dab)

P(a)P(b)P(dab)

)

(2)PMFLOCAL(a, b) = kBTlog

(

P(a|θa)P(θa)

P(a)

)

+ kBTlog

(

P(b|θb)P(θb)

P(b)

)

(3)PMF3D(a, b) = kBTlog(P(dab))

(4)PMF3DC(a, b) = kBTlog

(

P(θa, θb)|dab

P(θa, θb)

)

(5)PMFS3DC(a, b) = −kBTlog

(

P(a, b|dab, θa, θb)P(θa, θb)

P(a, b|θa, θb)P(θa, θb|dab)

)

(6)E =
∑

a,b

PMF(a, b)

(7)PAIR = ES3DC − E3DC + E3D − ELOCAL+ ε

(8)
ECOMB = ES3DC − E3DC − ELOCAL
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In conclusion, the SPServer has 6 types of SPs available that differ on the environmen-
tal features considered for the contact definition: (1) ES3DC considers residue frequen-
cies along distances and their environments (i.e. hydrophobicity of each amino acid, 
solvent accessibility and secondary structure); (2) E3DC considers frequencies along dis-
tances of pairs referred by the hydrophobicity of the amino acids and the rest of their 
environments; (3) PAIR considers amino acid frequencies along distances; (4) ELOCAL 
considers amino acid frequencies on a particular environment; (5) E3D considers the 
frequencies of any pair of residues along distances; and finally, (6) ECOMB combines 
ES3DC, ELOCAL and E3DC scores [9]. Additionally, Z-scores are provided for each one 
of these scoring functions by normalizing the scores with respect to the average and 
standard deviation of 1000 random sequences with the same structure. Similarly, scoring 
profiles can also be transformed into Z-scoring profiles by normalizing with respect to 
the 20 possible amino acids in each position. As calculated, scores are proxy measures 
for energy, and thus, the lowest the score is, the closer the model is to the native-like 
structure.

Output for protein folds

For a set of protein folds, the SPServer outputs: (1) the global scores (raw and normal-
ized) of all SPs; and (2) the scoring profile per residue (local scores) along the protein 
sequence. Global scores account for the overall quality of structural models, while per-
residue score plots pinpoint problematic regions of the models that likely have either a 
wrong conformation or contacts with a wrongly modelled region.

Output for protein–protein interactions

For PPIs, the server outputs: (1) global scores for the quality of the interface between 
the two interacting proteins; (2) a measure of the penetration between two proteins to 
assess for steric clashes at the interface; and (3) interface maps with the scores of residue 
contact-pairs between the two proteins. Global scores inform on the overall quality of 
the interaction (i.e. for ranking docking poses). The measurement of steric hindrances 
is indicated in a color legend depending on the relevance of the clashes (see Additional 
file 1: Data and Additional file 2: Figure S1 for details). Finally, interface maps allow for 
detailed exploration of the protein interfaces at residue level. The server also provides 
different tools to smooth and compare interface maps.

Results and discussion
Case study 1: Evaluation of the structural models of Cysteine synthase A

We compared the native structure of Cysteine synthase A from E. coli with two decoys 
of predicted structures: a near-native structure and a wrong decoy. All structures were 
retrieved from the CASP12 dataset (codes T0861, T0861TS275_2 and T0861TS321_1) 
[36]. The global scores rank the native structure with the lowest score, followed by the 
near-native and the wrong decoy (see Additional file 13: Table S1). Local score profiles 
of the native and the near-native structures are very similar, while the profile of the 
wrong decoy is different (see Additional file 3: Figure S2 and Additional file 4: Figure S3). 
Moreover, we compared the results of SPServer PAIR potential with a standard statisti-
cal potential (PROSA [6]). Both potentials show similar differences between the profiles 
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of the native structure and the wrong decoy (Pearson correlation coefficient = 0.50), 
and highlight the residue-residue contact areas corresponding with wrongly modelled 
regions of the decoy structure (see Fig. 2).

Case study 2: Mutation in the interaction between BAX and BID

The interaction of BAX with BID mediates the insertion of BAX in the outer mitochon-
drial membrane, which induces apoptosis [37]. The BAX variant G108V has been associ-
ated with Burkitt Lymphoma [38]. We analyzed the interaction BAX-BID in its native 
form and the G108V variant (mutant form) generated with Modeller [19]. At a global 
level, only two of SPs are slightly higher for the mutant (i.e. PAIR, ES3DC and their 

Fig. 2 Comparison of the residue pair scores for the native and wrong decoy structures of cysteine synthase 
calculated with PROSA and SPServer. a Residue‑residue contact maps are shown at the top, with green/blue, 
pink/red and brown/yellow colors identifying native contacts that have been lost when comparing the native 
structure and the wrong decoy, where native contacts are lost. b Local profile of the difference between the 
scores per residue of the native structure and the wrong decoy (in red are shown the scores of PAIR and in 
blue the scores of Pair potential of PROSA). The regions highlighted in the contact maps are also shown on 
the X‑axis above the residue number, showing a coincidence between high scores and the regions where the 
wrong decoy differs from the native structure
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respective Z-scores) while the rest remain unaffected (see Additional file 14: Table S2). 
However, the analysis of the interface identifies the detrimental effect of the mutation, 
as observed in the region around residues 108–110 of BAX (see Additional file 5: Figure 
S4).

Evaluation of the SPServer global and residue scores on the CASP12 benchmark

We test the SPs of the SPServer on the CASP12 [36] benchmark curated by López-
Blanco et  al. [39] (Additional file  17: Table  S5). We classify the decoys of the bench-
mark as near-native (GDT_TS ≥ 65%, as defined in [40]) and wrong (GDT_TS < 65%). 
The final CASP12 benchmark contains 9,977 structures, of which 2,100 were classified 
as near-native and 7,845 as wrongly modelled, and 32 were the native structure. We 
compare SPServer global and local scores with those from two standard scoring pro-
grams: PROSA [6] and DOPE [41]. In Fig. 3, we show the distributions of different scores 
for wrongly modelled decoys, near-native decoys and native structures in the CASP12 
benchmark for proteins with different length. The scoring functions distinguish between 
native and non-native structures, assigning lower scores to native, higher scores to 
near-native and much higher to wrong decoy conformations. For proteins longer than 
200 residues, all scoring approaches clearly separate native, near-native and wrong 

Fig. 3 Distribution of scores for proteins in CASP12 dataset. Scores of native (green), near native (blue) and 
wrong decoy structures (red) are shown with respect to the protein number of residues. The figure shows in 
four panels the distributions of scores obtained with PROSA (Z‑score of Pair potential), DOPE and the Z‑scores 
of PAIR (ZPAIR) and ES3DC (ZES3DC). Distribution of scores independent of protein length are shown in the 
left of each panel
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conformations. However, the scores of PROSA (Z-score of Pair potential), ZES3DC 
(Z-score normalized ES3DC) and ZPAIR (Z-score of PAIR) are optimal to distinguish 
between native and non-native structures.

In the Additional file 1: Data, we include the pairwise correlations between the global 
(full protein) and local (per residue) scores of the SPServer scoring functions PAIR and 
ES3DC, and the scores of PROSA (Pair potential) and DOPE. The Pearson correlation 
coefficients between the potentials ZPAIR and ZES3DC and the state-of-the-art poten-
tials PROSA and DOPE are higher than 0.6 (ranging between 0.6 and 0.72, see Addi-
tional file  15: Table  S3 and Additional file  6: Figure S5). We also compared the local 
scores (profiles per residue) of the different scoring functions. The SPServer profiles with 
score PAIR are correlated with the profiles using DOPE (0.57) and PROSA (0.38) (see 
Additional file 16: Table S4 and Additional file 12: Figure S11).

Additionally, we compare the global Z-scores of SPServer with three quality metrics 
used as reference in CASP: Template Modelling (TM) score [42], Global Distance Test 
(GDT_TS) [43] and Quality Control Score (QCS) [44]. TM score and GDT_TS measure 
the quality of a model based on its similarity with the native structure. In contrast, QCS 
measures the quality of the model based on structural features such as the position of its 
secondary structure elements. Additional file 15: Table S3 and Additional file 6: Figure 
S5 compare ZPAIR and ZES3DC global scores with TM, GDT_TS and QCS (Pearson 
correlations range between − 0.44 and − 0.58). Our scores compete with other scores, 
such as the Z-score of PROSA or the global score of DOPE, showing similar Pearson 
correlations with both (ranging between − 0.1 and − 0.47), proving their utility to detect 
the right fold among several decoys. The comparison of scores for all the CASP12 struc-
tures can be easily visualized as scatter plots in Additional files 7–11: Figures S6–S10.

Comparison of the SPServer interface with other protein scoring web servers

We compared the SPServer in terms of input flexibility, user-friendliness, speed and 
intuitive visualization of results with other state-of-the-art functional web servers for 
protein fold assessment (ANOLEA [14], MODFOLD6 [18], ProQ3D [17], ProSA-web 
[6], QMEAN [16], Verify 3D [15], VoroMQA [8]). SPServer, ANOLEA [14], PROSA-
web [6] and QMEAN [16] use statistical potentials. ModFOLD6 [18] and ProQ3D [17] 
combine several structural features and outputs from 3rd party software into neural net-
works. QMEAN [16] and VERIFY 3D [15] analyze local structural features such as the 
secondary structure, the degree of exposure and the degree of polarity for each amino 
acid. VoroMQA [8] analyzes contact regions based on the study of van der Waals radius 
through Voronoi tessellations. The comparison is summarized in Table 1.

In terms of input flexibility, the SPServer accepts both PDB and mmCIF formats, 
inputs with single or multiple structures, and does not require the sequence or the iden-
tifiers of the protein chains because it handles everything automatically. In contrast, only 
ProQ3D and QMEAN accept mmCIF format, and only MODFOLD6, ProQ3D, QMEAN 
and VoroMQA accept multiple structures.

In terms of scoring calculation, all the web servers offer both global and local scores 
in short time. The only web server requiring some extra time of calculation is MOD-
FOLD6, as it integrates different scoring functions and the use of neural networks.
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Finally, in terms of intuitive visualization of the results, most web servers offer clear 
plots for the analysis of local scores. They also provide a tool to visualize the structure, 
where the residues are colored according to their local score. Still, only the SPServer 
provides interactive tools to easily compare the local scores of multiple structures; the 
local scores can be visualized together in the same plot and smoothed or shifted accord-
ing to the user’s preferences. Additionally, none of the methods reviewed provide tools 
to score the quality of the interface of PPIs.

Conclusions
The SPServer facilitates the quality assessment of both protein folds and protein–protein 
interaction structures in an easy-to-use web server. The quality assessment of the struc-
tures is obtained with Split-Statistical Potentials scoring functions that handle several 
terms associated with the structural local features of the amino acid environments. They 
are obtained from the analysis of empirical structures: different terms are taken into 
account such as pairs of interacting residues, solvent accessibility or type of secondary 
structure. The Split-Statistical Potentials have been tested on the CASP12 dataset and 
distinguish successfully native structures from wrong decoys. Moreover, the resulting 
scores are highly correlated with those from reference scoring functions such as PROSA 
and DOPE. While the other state-of-the-art web servers only show the local scores of 
the structures in a plot, the SPServer permits to compare different local score profiles 
simultaneously. This is done in an interactive plot where the scores can be smoothed or 
shifted to facilitate the analysis and visualization. Thanks to these analytical tools, we can 
use the SPServer to compare the quality of different protein models and protein–protein 

Table 1 Comparison of  the  input, scoring and  output functionalities of  the  SPServer 
and other current servers for the assessment of protein folds

SERVER REF. METHOD
INPUT SCORING OUTPUT

Formats 
accepted

Accepts 
multiple 

structures

Global 
&

Local
Computing 

time*
Graphical 
visualiz.

Structure 
visualiz.

Compare 
multiple 
results

SPServer Statistical 
potentials

PDB / 
CIF 1min

ANOLEA [14] Statistical 
potentials PDB <1min

MODFOLD6 [18] Neural 
networks PDB >1h

ProQ3D [17] Neural 
networks

PDB /
CIF 1min

ProSA-web [6] Statistical 
potentials PDB <1min

QMEAN [16] 

Statistical 
potentials 
and local 
structural 
features

PDB / 
CIF <1min

Verify 3D [15]
Local 

structural 
features

PDB <1min

VoroMQA [8] Voronoi 
tessellations PDB <1min

*The computing time is approximated using the same structure (1mbn.pdb) and includes the queue waiting time at the 
moment of submission. We note that the requirement of time may have a strong dependence on the number of users and 
must not be used to compare the performance
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interactions, or to understand better the structural effect of a mutation both on the fold 
and the binding.

Availability and requirements

Project name: SPServer.
Project home page: https ://sbi.upf.edu/spser ver.
Operating system(s): Platform independent.
Programming language: PHP, JavaScript, Python.
Other requirements: Chrome, Safari, Firefox or any other modern browser.
License: Open Source.
Any restrictions to use by non-academics: None.

Supplementary information
Supplementary information accompanies this paper at https ://doi.org/10.1186/s1285 9‑020‑03770 ‑5.

Additional file 1. Data.

Additional file 2.  Figure S1: Identification of steric crashes using GEPOL approach to calculate the surface. The two 
atoms are represented as light blue and light brown circles. The normal and position vectors are shown both in a 
case where there is no steric crash (a), and there is a steric crash (b). In the case (a) both vectors form and acute angle 
(i.e. < 90°) while in the case (b) they form an obtuse angle (i.e. > 90), and thus the sign of the two dot products will 
be negative.

Additional file 3.  Figure S2: Residue scores of the native structure of Cysteine synthase A (green), the near‑native 
model (blue) and the wrong model (red). The curves represent the smoothed PAIR scores with a sliding window of 
value 10.

Additional file 4.  Figure S3: Difference between the residue scores of the native structure (reference) and the 
near‑native (blue) and wrong (red) models. The curves represent the smoothed PAIR scores with a sliding window of 
value 10.

Additional file 5. Figure S4: Local scores map of the interface of the interaction between BAX (Receptor) and BID 
(Ligand). Large cells are used for local scores (statistic energy) of the wildtype structure and upper (smaller) squares 
are for the mutant. Energies are shown by colors, from high (red) to low (blue), indicating the range in the label at 
the bottom. The scores are calculated with the PAIR potential, using a sliding window of 1 to smooth, being the 
optimal interactions those with most negative energy.

Additional file 6.  Figure S5: Mean Pearson correlation values of the comparison between the global scores of the 
SPServer (ZES3DC and ZPAIR), DOPE and PROSA (Pair Z‑score) potentials, and TM, GDT_TS and QCS quality metrics for 
the structures of CASP12 benchmark. The correlation values are extracted after performing a bootstrapping strategy 
of 1000 repetitions (described above). The Pearson correlation values of TM score, GDT_TS and QCS are negative 
because their score is higher when the model is more similar to the native structure (the opposite of the statistical 
potentials).

Additional file 7. Figure S6: Scatter plots of the global scores of the SPServer potentials ZES3DC (a) and ZPAIR (b) 
with respect to PROSA (Z‑score of Pair potential) for the structures of the CASP12 benchmark.

Additional file 8. Figure S7: Scatter plots of the global scores of the SPServer potentials ZES3DC (a) and ZPAIR (b) 
with respect to DOPE for the structures of the CASP12 benchmark.

Additional file 9.  Figure S8: Scatter plots of the global scores of the SPServer potentials ZES3DC (a) and ZPAIR (b) 
with respect to GDT_TS for the structures of the CASP12 benchmark.

Additional file 10. Figure S9: Scatter plots of the global scores of the SPServer potentials ZES3DC (a) and ZPAIR (b) 
with respect to TM score for the structures of the CASP12 benchmark.

Additional file 11. Figure S10: Scatter plots of the global scores of the SPServer potentials ZES3DC (a) and ZPAIR (b) 
with respect to QCS for the structures of the CASP12 benchmark.

Additional file 12.  Figure S11: Histograms showing the residue correlations between the SPServer scoring func‑
tions (ES3DC and PAIR) and the PROSA (Pair) and DOPE scoring functions. Each correlation value corresponds to the 
correlation of all the residue scores of a structure from the CASP12 benchmark.

Additional file 13.  Table S1: Global scores of the native structure of Cysteine synthase A and two predicted struc‑
tural models.

https://sbi.upf.edu/spserver
https://doi.org/10.1186/s12859-020-03770-5


Page 11 of 13Aguirre‑Plans et al. BMC Bioinformatics            (2021) 22:4  

Additional file 14. Table S2: Global scores of the native structure of Cysteine synthase A and two of its models.

Additional file 15.  Table S3: Comparison between global and quality metrics for the structures of CASP12 
benchmark.

Additional file 16.  Table S4: Comparison of local (residue) profiles between SPServer and state‑of‑art methods 
DOPE and PROSA for the structures of CASP12 benchmark.

Additional file 17. Table S5: SPServer global Z‑scores (ZES3DC, ZPAIR), PROSA (Pair Z‑score), DOPE score, GDT_TS, 
TM score and QCS of the structures of the CASP12 benchmark.
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